References
- Gomez-Palacio-Schjetnan, A. & Escobar, M. L. (2013) Neurotrophins and synaptic plasticity. Curr Top Behav Neurosci 15, 117-136, doi:10.1007/7854_2012_231
- Allen, S. J. & Dawbarn, D. (2006) Clinical relevance of the neurotrophins and their receptors. Clin Sci (Lond) 110, 175-191, doi:10.1042/CS20050161
- Chao, M. V., Rajagopal, R. & Lee, F. S. (2006) Neurotrophin signalling in health and disease. Clin Sci (Lond) 110, 167-173, doi:10.1042/CS20050163
- Zeng, H. & Wu, X. (2016) Alzheimer's disease drug development based on Computer-Aided Drug Design. Eur J Med Chem 121, 851-863, doi:10.1016/j.ejmech.2015.08.039
- Harshad M, (2016) J Pharm Bioallied Sci., 8(2): 83–91
- Molinski TF, Dalisay DS, Lievens SL et al. (2009) Nat Rev Drug Discov., 8:69–85
- Gerwick WH, Moore BS. (2012) Chem Biol., 19:85–98
- J. Allen, S., J. Watson, J. and Dawbarn, D. (2011) ‘The Neurotrophins and Their Role in Alzheimers Disease’, Current Neuropharmacology. doi: 10.2174/157015911798376190.
- Lane, C. A., Hardy, J. and Schott, J. M. (2018) ‘Alzheimer’s disease’, European Journal of Neurology, 25(1), pp. 59–70. doi: 10.1111/ene.13439.
- Lewis, F. et al. (2014) ‘The trajectory of dementia in the UK – making a difference.’, Report for Alzheimer’s Research UK by OHE Consulting, (June).
- Long, J. M. and Holtzman, D. M. (2019) ‘Alzheimer Disease: An Update on Pathobiology and Treatment Strategies’, Cell. Cell Press, pp. 312–339. doi: 10.1016/j.cell.2019.09.001.
- Prince, M. (2015) ‘World Alzheimer Report’. Available at: https://www.alz.co.uk/research/WorldAlzheimerReport2015.pdf.
- Reichardt, L. F. (2006) ‘Neurotrophin-regulated signalling pathways’, Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1473), pp. 1545–1564. doi: 10.1098/rstb.2006.1894.
- Choi, S. H., Kim, Y. H., Quinti, L., Tanzi, R. E., & Kim, D. Y. (2016). 3D culture models of Alzheimer’s disease: A road map to a “cure-in-a-dish.” Molecular Neurodegeneration, 11(1), 1–11. https://doi.org/10.1186/s13024-016-0139-7
- Drummond, E., & Wisniewski, T. (2017). Alzheimer’s disease: experimental models and reality. Acta Neuropathologica, 133(2), 155–175. https://doi.org/10.1007/s00401-016-1662-x
- Farkhondeh, A., Li, R., Gorshkov, K., Chen, K. G., Might, M., Rodems, S., Lo, D. C., & Zheng, W. (2019). Induced pluripotent stem cells for neural drug discovery. Drug Discovery Today, 24(4), 992–999. https://doi.org/10.1016/j.drudis.2019.01.007
- Hayashi, Y., Lin, H. T., Lee, C. C., & Tsai, K. J. (2020). Effects of neural stem cell transplantation in Alzheimer’s disease models. Journal of Biomedical Science, 27(1), 1–11. https://doi.org/10.1186/s12929-020-0622-x
- Kondo, T., Imamura, K., Funayama, M., Tsukita, K., Miyake, M., Ohta, A., Woltjen, K., Nakagawa, M., Asada, T., Arai, T., Kawakatsu, S., Izumi, Y., Kaji, R., Iwata, N., & Inoue, H. (2017). iPSC-Based Compound Screening and In Vitro Trials Identify a Synergistic Anti-amyloid β Combination for Alzheimer’s Disease. Cell Reports, 21(8), 2304–2312. https://doi.org/10.1016/j.celrep.2017.10.109
- LaFerla, F. M., & Green, K. N. (2012). Animal models of Alzheimer disease. Cold Spring Harbor Perspectives in Medicine, 2(11), 1–14. https://doi.org/10.1101/cshperspect.a006320
- Lin, Y. T., Seo, J., Gao, F., Feldman, H. M., Wen, H. L., Penney, J., Cam, H. P., Gjoneska, E., Raja, W. K., Cheng, J., Rueda, R., Kritskiy, O., Abdurrob, F., Peng, Z., Milo, B., Yu, C. J., Elmsaouri, S., Dey, D., Ko, T., … Tsai, L. H. (2018). APOE4 Causes Widespread Molecular and Cellular Alterations Associated with Alzheimer’s Disease Phenotypes in Human iPSC-Derived Brain Cell Types. Neuron, 98(6), 1141-1154.e7. https://doi.org/10.1016/j.neuron.2018.05.008
- Mahajani, S., Raina, A., Fokken, C., Kügler, S., & Bähr, M. (2019). Homogenous generation of dopaminergic neurons from multiple hiPSC lines by transient expression of transcription factors. Cell Death and Disease, 10(12). https://doi.org/10.1038/s41419-019-2133-9
- Naujock, M., Stanslowsky, N., Bufler, S., Naumann, M., Reinhardt, P., Sterneckert, J., Kefalakes, E., Kassebaum, C., Bursch, F., Lojewski, X., Storch, A., Frickenhaus, M., Boeckers, T. M., Putz, S., Demestre, M., Liebau, S., Klingenstein, M., Ludolph, A. C., Dengler, R., … Petri, S. (2016). 4-Aminopyridine Induced Activity Rescues Hypoexcitable Motor Neurons from Amyotrophic Lateral Sclerosis Patient-Derived Induced Pluripotent Stem Cells. Stem Cells, 34(6), 1563–1575. https://doi.org/10.1002/stem.2354
- Paul, S. M., Mytelka, D. S., Dunwiddie, C. T., Persinger, C. C., Munos, B. H., Lindborg, S. R., & Schacht, A. L. (2010). How to improve RD productivity: The pharmaceutical industry’s grand challenge. Nature Reviews Drug Discovery, 9(3), 203–214. https://doi.org/10.1038/nrd3078
- Sarkar, A., Mei, A., Paquola, A. C. M., Stern, S., Bardy, C., Klug, J. R., Kim, S., Neshat, N., Kim, H. J., Ku, M., Shokhirev, M. N., Adamowicz, D. H., Marchetto, M. C., Jappelli, R., Erwin, J. A., Padmanabhan, K., Shtrahman, M., Jin, X., & Gage, F. H. (2018). Efficient Generation of CA3 Neurons from Human Pluripotent Stem Cells Enables Modeling of Hippocampal Connectivity In Vitro. Cell Stem Cell, 22(5), 684-697.e9. https://doi.org/10.1016/j.stem.2018.04.009
- Shi, Yanhong Inoue, Haruhisa Wu, Joseph C. Yamanaka, S. (2017). Induced pluripotent stem cell technology: a decade of progress. Nature Reviews Drug Discovery, 176(10), 139–148. https://doi.org/10.1038/nrd.2016.245.Induced
- Shi, Y., Kirwan, P., & Livesey, F. J. (2012). Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks. Nature Protocols, 7(10), 1836–1846. https://doi.org/10.1038/nprot.2012.116
- Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., & Yamanaka, S. (2007). Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell, 131(5), 861–872. https://doi.org/10.1016/j.cell.2007.11.019
- Takahashi, K., & Yamanaka, S. (2006). Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell, 126(4), 663–676. https://doi.org/10.1016/j.cell.2006.07.024
- Tan, H. Y., Cho, H., & Lee, L. P. (2021). Human mini-brain models. Nature Biomedical Engineering, 5(1), 11–25. https://doi.org/10.1038/s41551-020-00643-3
- Wang, Chengzhong Najm, Ramsey Xu, Qin Jeong, Dah-eun Walker, David Balestra, Maureen E. Yoon, Seo Yeon Yuan, Heidi Li, Gang Miller, Zachary A. Miller, Bruce L. Malloy, M. J. and Y. H. (2018). Gain of toxic Apolipoprotein E4 effects in Human iPSC-Derived Neurons Is Ameliorated by a Small-Molecule Structure Corrector. Nature Medicine, 176(10), 139–148. https://doi.org/10.1038/s41591-018-0004-z.Gain
- Zhang, P., Xia, N., & Reijo Pera, R. A. (2014). Directed dopaminergic neuron differentiation from human pluripotent stem cells. Journal of Visualized Experiments, 91. https://doi.org/10.3791/51737