• Project
    • Overview
    • Research >
      • Work Packages
      • Individual Research Projects
    • Governance
  • Network
    • Beneficiaries
    • Partner Organisations
  • People
    • Supervisors >
      • Theodora Calogeropoulou
      • Rebecca Wade
      • Stefano Mangani
      • Christophe Rochais
      • Vasileios Roussis
      • Vasileia Ismini Alexaki
      • Achilleas Gravanis
      • Ka Wan Li
      • Dame Pamela Shaw
    • Early Stage Researchers >
      • ESR1: Daniele Narducci
      • ESR2: Alessia Latorrata
      • ESR3: Athanasios-Alexandros Tsengenes
      • ESR4: Christina Athanasiou
      • ESR5: Federica Carucci
      • ESR6: Mirjana Antonijević
      • ESR7: Paolo Giaccio
      • ESR8: Canelif Yilmaz
      • ESR9: Ana Aragón
      • ESR10: Débora Pita
      • ESR11: Thanasis Rogdakis
      • ESR12: Desponia Charou
      • ESR13: Evangelia Thanou
      • ESR14: Marco Destro
    • Scientific Advisory Board
  • Training
    • Approach
    • Objectives >
      • Secondments
    • Events >
      • 1st Network Week
      • 2nd Network Week
      • 3rd Network Week
  • Publications
  • Outreach
    • Events
    • Public Engagement
    • Results
    • Conference
    • Newsletter >
      • January 2021
      • April 2021
      • December 2021
  • News
  • Job Openings
    • Vacancies
    • Submit your application
  • Contact
EURONEUROTROPHIN
  • Project
    • Overview
    • Research >
      • Work Packages
      • Individual Research Projects
    • Governance
  • Network
    • Beneficiaries
    • Partner Organisations
  • People
    • Supervisors >
      • Theodora Calogeropoulou
      • Rebecca Wade
      • Stefano Mangani
      • Christophe Rochais
      • Vasileios Roussis
      • Vasileia Ismini Alexaki
      • Achilleas Gravanis
      • Ka Wan Li
      • Dame Pamela Shaw
    • Early Stage Researchers >
      • ESR1: Daniele Narducci
      • ESR2: Alessia Latorrata
      • ESR3: Athanasios-Alexandros Tsengenes
      • ESR4: Christina Athanasiou
      • ESR5: Federica Carucci
      • ESR6: Mirjana Antonijević
      • ESR7: Paolo Giaccio
      • ESR8: Canelif Yilmaz
      • ESR9: Ana Aragón
      • ESR10: Débora Pita
      • ESR11: Thanasis Rogdakis
      • ESR12: Desponia Charou
      • ESR13: Evangelia Thanou
      • ESR14: Marco Destro
    • Scientific Advisory Board
  • Training
    • Approach
    • Objectives >
      • Secondments
    • Events >
      • 1st Network Week
      • 2nd Network Week
      • 3rd Network Week
  • Publications
  • Outreach
    • Events
    • Public Engagement
    • Results
    • Conference
    • Newsletter >
      • January 2021
      • April 2021
      • December 2021
  • News
  • Job Openings
    • Vacancies
    • Submit your application
  • Contact

References

  • Alexaki, V. I. et al. DHEA inhibits acute microglia-mediated inflammation through activation of the TrkA-Akt1/2-CREB-Jmjd3 pathway. Mol. Psychiatry 23, 1410–1420 (2018).
  • Alvarez, X. A. et al. A 24-week, double-blind, placebo-controlled study of three dosages of Cerebrolysin in patients with mild to moderate Alzheimer’s disease. Eur. J. Neurol. 13, 43–54 (2006).
  • Alvarez, X. A. et al. Efficacy and safety of Cerebrolysin in moderate to moderately severe Alzheimer’s disease: Results of a randomized, double-blind, controlled trial investigating three dosages of Cerebrolysin. Eur. J. Neurol. 18, 59–68 (2011).
  • Arkhipov, A. et al. Architecture and Membrane Interactions of the EGF Receptor. Cell 152, 557–569 (2013).
  • Berrera, M., Cattaneo, A. & Carloni, P. Molecular Simulation of the Binding of Nerve Growth Factor Peptide Mimics to the Receptor Tyrosine Kinase A. Biophys. J. 91, 2063–2071 (2006).
  • Bonetto, G., Charalampopoulos, I., Gravanis, A. & Karagogeos, D. The novel synthetic microneurotrophin BNN27 protects mature oligodendrocytes against cuprizone-induced death, through the NGF receptor TrkA. Glia 65, 1376–1394 (2017).
  • Botsakis, K. et al. BNN-20, a synthetic microneurotrophin, strongly protects dopaminergic neurons in the “weaver” mouse, a genetic model of dopamine-denervation, acting through the TrkB neurotrophin receptor. Neuropharmacology 121, 140–157 (2017).
  • Bruno, M. A. et al. Long-lasting rescue of age-associated deficits in cognition and the CNS cholinergic phenotype by a partial agonist peptidomimetic ligand of TrkA. J. Neurosci. 24, 8009–8018 (2004).
  • Calogeropoulou, T. et al. Novel dehydroepiandrosterone derivatives with antiapoptotic, neuroprotective activity. J. Med. Chem. 52, 6569–6587 (2009).
  • Casarotto, P. C. et al. Antidepressant drugs act by directly binding to TRKB neurotrophin receptors. Cell 184, 1299-1313.e19 (2021).
  • Chao, M. V. Neurotrophins and their receptors: A convergence point for many signalling pathways. Nat. Rev. Neurosci. 4, 299–309 (2003).
  • Chen, J. et al. Antioxidant activity of 7,8-dihydroxyflavone provides neuroprotection against glutamate-induced toxicity. Neurosci. Lett. 499, 181–185 (2011).
  • Congdon, E. E.; Sigurdsson, E. M. Tau-Targeting Thera-pies for Alzheimer Disease. Nat. Rev. Neurol. 2018, 14 (7), 399–415.
  • Dennys, C. N. et al. Chronic inhibitory effect of riluzole on trophic factor production. Exp. Neurol. 271, 301–307 (2015).
  • English, A. W., Liu, K., Nicolini, J. M., Mulligan, A. M. & Ye, K. Small-molecule trkB agonists promote axon regeneration in cut peripheral nerves. Proc. Natl. Acad. Sci. U. S. A. 110, 16217–16222 (2013).
  • Forner, S.; Baglietto-Vargas, D.; Martini, A. C.; Trujillo-Estrada, L.; LaFerla, F. M. Synaptic Impairment in Alzheimer’s Disease: A Dysregulated Symphony. Trends Neurosci. 2017, 40 (6), 347–357.
  • Franco, M. L. et al. Interaction between the transmembrane domains of neurotrophin receptors p75 and TrkA mediates their reciprocal activation. J. Biol. Chem. 297, 100926 (2021).
  • Franco, M. L. et al. Structural basis of the transmembrane domain dimerization and rotation in the activation mechanism of the TRKA receptor by nerve growth factor. J. Biol. Chem. 295, 275–286 (2020).
  • Gao, H., Qiao, X., Cantor, L. B. & WuDunn, D. Up-regulation of brain-derived neurotrophic factor expression by brimonidine in rat retinal ganglion cells. Arch. Ophthalmol. 120, 797–803 (2002).
  • Glajch, K. E. et al. MicroNeurotrophins improve survival in motor neuron-astrocyte co-cultures but do not improve disease phenotypes in a mutant SOD1 mouse model of amyotrophic lateral sclerosis. PLoS One 11, 1–24 (2016).
  • Gómez-Palacio-Schjetnan, A. & Escobar, M. L. Neurotrophins and synaptic plasticity. in Current Topics in Behavioral Neurosciences 15, 117–136 (2013).
  • Gong, Y., Cao, P., Yu, H. & Jiang, T. Crystal structure of the neurotrophin-3 and p75NTR symmetrical complex. Nature 454, 789–793 (2008).
  • Harada, K., Kubo, M. & Fukuyama, Y. Chemistry and Neurotrophic Activities of (–)-Talaumidin and Its Derivatives. Frontiers in Chemistry vol. 8 (2020).
  • Huang, E. J. & Reichardt, L. F. Neurotrophins: roles in neuronal development and function. Annu. Rev. Neurosci. 24, 677–736 (2001).
  • Jang, S. W. et al. A selective TrkB agonist with potent neurotrophic activities by 7,8-dihydroxyflavone. Proc. Natl. Acad. Sci. U. S. A. 107, 2687–2692 (2010).
  • Jang, S. W. et al. Gambogic amide, a selective agonist for TrkA receptor that possesses robust neurotrophic activity, prevents neuronal cell death. Proc. Natl. Acad. Sci. U. S. A. 104, 16329–16334 (2007).
  • Jiang, M. et al. Small-molecule TrKB receptor agonists improve motor function and extend survival in a mouse model of huntington’s disease. Hum. Mol. Genet. 22, 2462–2470 (2013).
  • Josephy-Hernandez, S., Jmaeff, S., Pirvulescu, I., Aboulkassim, T. & Saragovi, H. U. Neurotrophin receptor agonists and antagonists as therapeutic agents: An evolving paradigm. Neurobiology of Disease vol. 97 139–155 (2017).
  • Korkmaz, O. T. et al. 7,8-Dihydroxyflavone improves motor performance and enhances lower motor neuronal survival in a mouse model of amyotrophic lateral sclerosis. Neurosci. Lett. 566, 286–291 (2014).
  • Lazaridis, I. et al. Neurosteroid dehydroepiandrosterone interacts with nerve growth factor (NGF) receptors, preventing neuronal apoptosis. PLoS Biol. 9, (2011).
  • Lecoutey, C.; Hedou, D.; Freret, T.; Giannoni, P.; Gaven, F.; Since, M. Design of Donecopride , a Dual Serotonin Subtype 4 Receptor Agonist / Acetylcholinesterase Inhibitor with Potential Interest for Alzheimer ’ s Disease Treatment. PNAS 2014, 3825–3830.
  • Lelimousin, M., Limongelli, V. & Sansom, M. S. P. Conformational Changes in the Epidermal Growth Factor Receptor: Role of the Transmembrane Domain Investigated by Coarse-Grained MetaDynamics Free Energy Calculations. J. Am. Chem. Soc. 138, 10611–10622 (2016).
  • Longo, F. M. & Massa, S. M. Small-molecule modulation of neurotrophin receptors: A strategy for the treatment of neurological disease. Nature Reviews Drug Discovery vol. 12 507–525 (2013).
  • Majdan, M., Walsh, G. S., Aloyz, R. & Miller, F. D. TrkA mediates developmental sympathetic neuron survival in vivo by silencing an ongoing p75NTR-mediated death signal. J. Cell Biol. 155, 1275–1286 (2001).
  • Massa, S. M. et al. Small molecule BDNF mimetics activate TrkB signaling and prevent neuronal degeneration in rodents. J. Clin. Invest. 120, 1774–1785 (2010).
  • Meldolesi, J. Neurotrophin receptors in the pathogenesis, diagnosis and therapy of neurodegenerative diseases. Pharmacol. Res. 121, 129–137 (2017).
  • Nie, S. et al. Small molecule TrkB agonist deoxygedunin protects nigrostriatal dopaminergic neurons from 6-OHDA and MPTP induced neurotoxicity in rodents. Neuropharmacology 99, 448–458 (2015).
  • Pediaditakis, I. et al. BNN27, a 17-spiroepoxy steroid derivative, interacts with and activates p75 neurotrophin receptor, rescuing cerebellar granule neurons from apoptosis. Front. Pharmacol. 7, (2016).
  • Pediaditakis, I. et al. BNN27, a 17-Spiroepoxy Steroid Derivative, Interacts With and Activates p75 Neurotrophin Receptor, Rescuing Cerebellar Granule Neurons from Apoptosis. Front. Pharmacol. 7, (2016).
  • Pediaditakis, I. et al. Selective and differential interactions of BNN27, a novel C17-spiroepoxy steroid derivative, with TrkA receptors, regulating neuronal survival and differentiation. Neuropharmacology 111, 266–282 (2016).
  • Pediaditakis, I. et al. Selective and differential interactions of BNN27, a novel C17-spiroepoxy steroid derivative, with TrkA receptors, regulating neuronal survival and differentiation. Neuropharmacology 111, 266–282 (2016).
  • Pietropaolo, A. et al. Binding of Zn(II) to Tropomyosin Receptor Kinase A in Complex with Its Cognate Nerve Growth Factor: Insights from Molecular Simulation and in Vitro Essays. ACS Chem. Neurosci. 9, 1095–1103 (2018).
  • Prakaash, D., Cook, G. P., Acuto, O. & Kalli, A. C. Multi-scale simulations of the T cell receptor reveal its lipid interactions, dynamics and the arrangement of its cytoplasmic region. PLOS Comput. Biol. 17, e1009232 (2021).
  • Red Brewer, M. et al. The juxtamembrane region of the EGF receptor functions as an activation domain. Mol. Cell 34, 641–51 (2009).
  • Rochais, C.; Lecoutey, C.; Hamidouche, K.; Giannoni, P.; Gaven, F.; Cem, E.; Mignani, S.; Baranger, K.; Freret, T.; Bockaert, J.; Rivera, S.; Boulouard, M.; Dallemagne, P.; Claey-sen, S. Donecopride, a Swiss Army Knife with Potential against Alzheimer’s Disease. Br. J. Pharmacol. 2020, 177 (9), 1988–2005.
  • Scarpi, D. et al. Low molecular weight, non-peptidic agonists of TrkA receptor with NGF-mimetic activity. Cell Death Dis. 3, (2012).
  • Settanni, G., Cattaneo, A. & Carloni, P. Molecular Dynamics Simulations of the NGF-TrkA Domain 5 Complex and Comparison with Biological Data. Biophys. J. 84, 2282–2292 (2003).
  • Shi, J., Longo, F. M. & Massa, S. M. A small molecule p75NTR ligand protects neurogenesis after traumatic brain injury. Stem Cells 31, 2561–2574 (2013).
  • Shoemark, D. K. et al. Design and Nuclear Magnetic Resonance (NMR) Structure Determination of the Second Extracellular Immunoglobulin Tyrosine Kinase A (TrkAIg2) Domain Construct for Binding Site Elucidation in Drug Discovery. J. Med. Chem. 58, 767–777 (2015).
  • Simmons, D. A. et al. A small molecule p75NTR ligand, LM11A-31, reverses cholinergic neurite dystrophy in Alzheimer’s disease mouse models with mid- To late-stage disease progression. PLoS One 9, (2014).
  • Tamagaki, H. et al. Coupling of Transmembrane Helix Orientation To Membrane Release of the Juxtamembrane Region in FGFR3. Biochemistry 53, 5000–5007 (2014).
  • Tep, C. et al. Oral administration of a small molecule targeted to block proNGF binding to p75 promotes myelin sparing and functional recovery after spinal cord injury. J. Neurosci. 33, 397–410 (2013).
  • Wang, Z. et al. Coaction of Electrostatic and Hydrophobic Interactions: Dynamic Constraints on Disordered TrkA Juxtamembrane Domain. J. Phys. Chem. B 123, 10709–10717 (2019).
  • Watson, F. L., Porcionatto, M. A., Bhattacharyya, A., Stiles, C. D. & Segal, R. A. TrkA glycosylation regulates receptor localization and activity. J. Neurobiol. 39, 323–36 (1999).
  • Wehrman, T. et al. Structural and Mechanistic Insights into Nerve Growth Factor Interactions with the TrkA and p75 Receptors. Neuron 53, 25–38 (2007).
  •  Weller, J.; Budson, A. Current Understanding of Alzheimer’s Disease Diagnosis and Treatment. F1000 Res. 2018, 7 (1161), 1–9.
  • Wenzel T. J.; Klegeris, A. Novel Multi-Target Directed Ligand-Based Strategies for Reducing Neuroinflammation in Alzheimer’s Disease. Life Sci. 2018, 207 (January), 314–322. 
Picture

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 765704
Disclaimer | Member Area
© accelopment Schweiz 2019. ALL RIGHTS RESERVED.
  • Project
    • Overview
    • Research >
      • Work Packages
      • Individual Research Projects
    • Governance
  • Network
    • Beneficiaries
    • Partner Organisations
  • People
    • Supervisors >
      • Theodora Calogeropoulou
      • Rebecca Wade
      • Stefano Mangani
      • Christophe Rochais
      • Vasileios Roussis
      • Vasileia Ismini Alexaki
      • Achilleas Gravanis
      • Ka Wan Li
      • Dame Pamela Shaw
    • Early Stage Researchers >
      • ESR1: Daniele Narducci
      • ESR2: Alessia Latorrata
      • ESR3: Athanasios-Alexandros Tsengenes
      • ESR4: Christina Athanasiou
      • ESR5: Federica Carucci
      • ESR6: Mirjana Antonijević
      • ESR7: Paolo Giaccio
      • ESR8: Canelif Yilmaz
      • ESR9: Ana Aragón
      • ESR10: Débora Pita
      • ESR11: Thanasis Rogdakis
      • ESR12: Desponia Charou
      • ESR13: Evangelia Thanou
      • ESR14: Marco Destro
    • Scientific Advisory Board
  • Training
    • Approach
    • Objectives >
      • Secondments
    • Events >
      • 1st Network Week
      • 2nd Network Week
      • 3rd Network Week
  • Publications
  • Outreach
    • Events
    • Public Engagement
    • Results
    • Conference
    • Newsletter >
      • January 2021
      • April 2021
      • December 2021
  • News
  • Job Openings
    • Vacancies
    • Submit your application
  • Contact