References
- Alexaki, V. I. et al. DHEA inhibits acute microglia-mediated inflammation through activation of the TrkA-Akt1/2-CREB-Jmjd3 pathway. Mol. Psychiatry 23, 1410–1420 (2018).
- Alvarez, X. A. et al. A 24-week, double-blind, placebo-controlled study of three dosages of Cerebrolysin in patients with mild to moderate Alzheimer’s disease. Eur. J. Neurol. 13, 43–54 (2006).
- Alvarez, X. A. et al. Efficacy and safety of Cerebrolysin in moderate to moderately severe Alzheimer’s disease: Results of a randomized, double-blind, controlled trial investigating three dosages of Cerebrolysin. Eur. J. Neurol. 18, 59–68 (2011).
- Arkhipov, A. et al. Architecture and Membrane Interactions of the EGF Receptor. Cell 152, 557–569 (2013).
- Berrera, M., Cattaneo, A. & Carloni, P. Molecular Simulation of the Binding of Nerve Growth Factor Peptide Mimics to the Receptor Tyrosine Kinase A. Biophys. J. 91, 2063–2071 (2006).
- Bonetto, G., Charalampopoulos, I., Gravanis, A. & Karagogeos, D. The novel synthetic microneurotrophin BNN27 protects mature oligodendrocytes against cuprizone-induced death, through the NGF receptor TrkA. Glia 65, 1376–1394 (2017).
- Botsakis, K. et al. BNN-20, a synthetic microneurotrophin, strongly protects dopaminergic neurons in the “weaver” mouse, a genetic model of dopamine-denervation, acting through the TrkB neurotrophin receptor. Neuropharmacology 121, 140–157 (2017).
- Bruno, M. A. et al. Long-lasting rescue of age-associated deficits in cognition and the CNS cholinergic phenotype by a partial agonist peptidomimetic ligand of TrkA. J. Neurosci. 24, 8009–8018 (2004).
- Calogeropoulou, T. et al. Novel dehydroepiandrosterone derivatives with antiapoptotic, neuroprotective activity. J. Med. Chem. 52, 6569–6587 (2009).
- Casarotto, P. C. et al. Antidepressant drugs act by directly binding to TRKB neurotrophin receptors. Cell 184, 1299-1313.e19 (2021).
- Chao, M. V. Neurotrophins and their receptors: A convergence point for many signalling pathways. Nat. Rev. Neurosci. 4, 299–309 (2003).
- Chen, J. et al. Antioxidant activity of 7,8-dihydroxyflavone provides neuroprotection against glutamate-induced toxicity. Neurosci. Lett. 499, 181–185 (2011).
- Congdon, E. E.; Sigurdsson, E. M. Tau-Targeting Thera-pies for Alzheimer Disease. Nat. Rev. Neurol. 2018, 14 (7), 399–415.
- Dennys, C. N. et al. Chronic inhibitory effect of riluzole on trophic factor production. Exp. Neurol. 271, 301–307 (2015).
- English, A. W., Liu, K., Nicolini, J. M., Mulligan, A. M. & Ye, K. Small-molecule trkB agonists promote axon regeneration in cut peripheral nerves. Proc. Natl. Acad. Sci. U. S. A. 110, 16217–16222 (2013).
- Forner, S.; Baglietto-Vargas, D.; Martini, A. C.; Trujillo-Estrada, L.; LaFerla, F. M. Synaptic Impairment in Alzheimer’s Disease: A Dysregulated Symphony. Trends Neurosci. 2017, 40 (6), 347–357.
- Franco, M. L. et al. Interaction between the transmembrane domains of neurotrophin receptors p75 and TrkA mediates their reciprocal activation. J. Biol. Chem. 297, 100926 (2021).
- Franco, M. L. et al. Structural basis of the transmembrane domain dimerization and rotation in the activation mechanism of the TRKA receptor by nerve growth factor. J. Biol. Chem. 295, 275–286 (2020).
- Gao, H., Qiao, X., Cantor, L. B. & WuDunn, D. Up-regulation of brain-derived neurotrophic factor expression by brimonidine in rat retinal ganglion cells. Arch. Ophthalmol. 120, 797–803 (2002).
- Glajch, K. E. et al. MicroNeurotrophins improve survival in motor neuron-astrocyte co-cultures but do not improve disease phenotypes in a mutant SOD1 mouse model of amyotrophic lateral sclerosis. PLoS One 11, 1–24 (2016).
- Gómez-Palacio-Schjetnan, A. & Escobar, M. L. Neurotrophins and synaptic plasticity. in Current Topics in Behavioral Neurosciences 15, 117–136 (2013).
- Gong, Y., Cao, P., Yu, H. & Jiang, T. Crystal structure of the neurotrophin-3 and p75NTR symmetrical complex. Nature 454, 789–793 (2008).
- Harada, K., Kubo, M. & Fukuyama, Y. Chemistry and Neurotrophic Activities of (–)-Talaumidin and Its Derivatives. Frontiers in Chemistry vol. 8 (2020).
- Huang, E. J. & Reichardt, L. F. Neurotrophins: roles in neuronal development and function. Annu. Rev. Neurosci. 24, 677–736 (2001).
- Jang, S. W. et al. A selective TrkB agonist with potent neurotrophic activities by 7,8-dihydroxyflavone. Proc. Natl. Acad. Sci. U. S. A. 107, 2687–2692 (2010).
- Jang, S. W. et al. Gambogic amide, a selective agonist for TrkA receptor that possesses robust neurotrophic activity, prevents neuronal cell death. Proc. Natl. Acad. Sci. U. S. A. 104, 16329–16334 (2007).
- Jiang, M. et al. Small-molecule TrKB receptor agonists improve motor function and extend survival in a mouse model of huntington’s disease. Hum. Mol. Genet. 22, 2462–2470 (2013).
- Josephy-Hernandez, S., Jmaeff, S., Pirvulescu, I., Aboulkassim, T. & Saragovi, H. U. Neurotrophin receptor agonists and antagonists as therapeutic agents: An evolving paradigm. Neurobiology of Disease vol. 97 139–155 (2017).
- Korkmaz, O. T. et al. 7,8-Dihydroxyflavone improves motor performance and enhances lower motor neuronal survival in a mouse model of amyotrophic lateral sclerosis. Neurosci. Lett. 566, 286–291 (2014).
- Lazaridis, I. et al. Neurosteroid dehydroepiandrosterone interacts with nerve growth factor (NGF) receptors, preventing neuronal apoptosis. PLoS Biol. 9, (2011).
- Lecoutey, C.; Hedou, D.; Freret, T.; Giannoni, P.; Gaven, F.; Since, M. Design of Donecopride , a Dual Serotonin Subtype 4 Receptor Agonist / Acetylcholinesterase Inhibitor with Potential Interest for Alzheimer ’ s Disease Treatment. PNAS 2014, 3825–3830.
- Lelimousin, M., Limongelli, V. & Sansom, M. S. P. Conformational Changes in the Epidermal Growth Factor Receptor: Role of the Transmembrane Domain Investigated by Coarse-Grained MetaDynamics Free Energy Calculations. J. Am. Chem. Soc. 138, 10611–10622 (2016).
- Longo, F. M. & Massa, S. M. Small-molecule modulation of neurotrophin receptors: A strategy for the treatment of neurological disease. Nature Reviews Drug Discovery vol. 12 507–525 (2013).
- Majdan, M., Walsh, G. S., Aloyz, R. & Miller, F. D. TrkA mediates developmental sympathetic neuron survival in vivo by silencing an ongoing p75NTR-mediated death signal. J. Cell Biol. 155, 1275–1286 (2001).
- Massa, S. M. et al. Small molecule BDNF mimetics activate TrkB signaling and prevent neuronal degeneration in rodents. J. Clin. Invest. 120, 1774–1785 (2010).
- Meldolesi, J. Neurotrophin receptors in the pathogenesis, diagnosis and therapy of neurodegenerative diseases. Pharmacol. Res. 121, 129–137 (2017).
- Nie, S. et al. Small molecule TrkB agonist deoxygedunin protects nigrostriatal dopaminergic neurons from 6-OHDA and MPTP induced neurotoxicity in rodents. Neuropharmacology 99, 448–458 (2015).
- Pediaditakis, I. et al. BNN27, a 17-spiroepoxy steroid derivative, interacts with and activates p75 neurotrophin receptor, rescuing cerebellar granule neurons from apoptosis. Front. Pharmacol. 7, (2016).
- Pediaditakis, I. et al. BNN27, a 17-Spiroepoxy Steroid Derivative, Interacts With and Activates p75 Neurotrophin Receptor, Rescuing Cerebellar Granule Neurons from Apoptosis. Front. Pharmacol. 7, (2016).
- Pediaditakis, I. et al. Selective and differential interactions of BNN27, a novel C17-spiroepoxy steroid derivative, with TrkA receptors, regulating neuronal survival and differentiation. Neuropharmacology 111, 266–282 (2016).
- Pediaditakis, I. et al. Selective and differential interactions of BNN27, a novel C17-spiroepoxy steroid derivative, with TrkA receptors, regulating neuronal survival and differentiation. Neuropharmacology 111, 266–282 (2016).
- Pietropaolo, A. et al. Binding of Zn(II) to Tropomyosin Receptor Kinase A in Complex with Its Cognate Nerve Growth Factor: Insights from Molecular Simulation and in Vitro Essays. ACS Chem. Neurosci. 9, 1095–1103 (2018).
- Prakaash, D., Cook, G. P., Acuto, O. & Kalli, A. C. Multi-scale simulations of the T cell receptor reveal its lipid interactions, dynamics and the arrangement of its cytoplasmic region. PLOS Comput. Biol. 17, e1009232 (2021).
- Red Brewer, M. et al. The juxtamembrane region of the EGF receptor functions as an activation domain. Mol. Cell 34, 641–51 (2009).
- Rochais, C.; Lecoutey, C.; Hamidouche, K.; Giannoni, P.; Gaven, F.; Cem, E.; Mignani, S.; Baranger, K.; Freret, T.; Bockaert, J.; Rivera, S.; Boulouard, M.; Dallemagne, P.; Claey-sen, S. Donecopride, a Swiss Army Knife with Potential against Alzheimer’s Disease. Br. J. Pharmacol. 2020, 177 (9), 1988–2005.
- Scarpi, D. et al. Low molecular weight, non-peptidic agonists of TrkA receptor with NGF-mimetic activity. Cell Death Dis. 3, (2012).
- Settanni, G., Cattaneo, A. & Carloni, P. Molecular Dynamics Simulations of the NGF-TrkA Domain 5 Complex and Comparison with Biological Data. Biophys. J. 84, 2282–2292 (2003).
- Shi, J., Longo, F. M. & Massa, S. M. A small molecule p75NTR ligand protects neurogenesis after traumatic brain injury. Stem Cells 31, 2561–2574 (2013).
- Shoemark, D. K. et al. Design and Nuclear Magnetic Resonance (NMR) Structure Determination of the Second Extracellular Immunoglobulin Tyrosine Kinase A (TrkAIg2) Domain Construct for Binding Site Elucidation in Drug Discovery. J. Med. Chem. 58, 767–777 (2015).
- Simmons, D. A. et al. A small molecule p75NTR ligand, LM11A-31, reverses cholinergic neurite dystrophy in Alzheimer’s disease mouse models with mid- To late-stage disease progression. PLoS One 9, (2014).
- Tamagaki, H. et al. Coupling of Transmembrane Helix Orientation To Membrane Release of the Juxtamembrane Region in FGFR3. Biochemistry 53, 5000–5007 (2014).
- Tep, C. et al. Oral administration of a small molecule targeted to block proNGF binding to p75 promotes myelin sparing and functional recovery after spinal cord injury. J. Neurosci. 33, 397–410 (2013).
- Wang, Z. et al. Coaction of Electrostatic and Hydrophobic Interactions: Dynamic Constraints on Disordered TrkA Juxtamembrane Domain. J. Phys. Chem. B 123, 10709–10717 (2019).
- Watson, F. L., Porcionatto, M. A., Bhattacharyya, A., Stiles, C. D. & Segal, R. A. TrkA glycosylation regulates receptor localization and activity. J. Neurobiol. 39, 323–36 (1999).
- Wehrman, T. et al. Structural and Mechanistic Insights into Nerve Growth Factor Interactions with the TrkA and p75 Receptors. Neuron 53, 25–38 (2007).
- Weller, J.; Budson, A. Current Understanding of Alzheimer’s Disease Diagnosis and Treatment. F1000 Res. 2018, 7 (1161), 1–9.
- Wenzel T. J.; Klegeris, A. Novel Multi-Target Directed Ligand-Based Strategies for Reducing Neuroinflammation in Alzheimer’s Disease. Life Sci. 2018, 207 (January), 314–322.